If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-8y-16=0
a = 1; b = -8; c = -16;
Δ = b2-4ac
Δ = -82-4·1·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{2}}{2*1}=\frac{8-8\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{2}}{2*1}=\frac{8+8\sqrt{2}}{2} $
| 3a-80=5a+8 | | 2(3x-2)-8x=6+5x | | 67-43x=-40667-43x=-406 | | 222=16-v | | 213-v=290 | | X=9y-13 | | 0.04x+0.03(5000-x)=180, | | 15-w=243 | | Y=x+13/9 | | 11x-95=52+4x | | 1/3y=19 | | 157=112-u | | (2/3)t=0 | | 6x-2∘=4x+48∘ | | -6(-3y+7)-3y=5(y-6)-7 | | 11x-134=3x+66 | | Y=x+(13/9) | | 4a+9=a2-1 | | 19=2y-17 | | 3+2x=54.5+3x | | 150=-5(-5-3p)+10p | | -6(1+2n)-5=-125 | | 32=4(n+2.1) | | 4u-15=13 | | -40-12x=-8x+84 | | 3(7x+2)=5(4x+1)+17, | | 193=131-u | | 42x=85 | | (10x-22)=(8x+12) | | -136+15x=7x+152 | | n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)(n-7)=7168 | | 120-y=183 |